MyoD uses overlapping but distinct elements to bind E-box and tetraplex structures of regulatory sequences of muscle-specific genes

نویسندگان

  • Jeny Shklover
  • Shulamit Etzioni
  • Pnina Weisman-Shomer
  • Anat Yafe
  • Eyal Bengal
  • Michael Fry
چکیده

Muscle differentiation and expression of muscle-specific proteins are initiated by the binding of heterodimers of the transcription factor MyoD with E2A proteins to E-box motif d(CANNTG) in promoters or enhancers of muscle-specific genes. MyoD homodimers, however, form tighter complexes with tetraplex structures of guanine-rich regulatory sequences of some muscle genes. In this work, we identified elements in MyoD that bind E-box or tetraplex structures of promoter sequences of the muscle-specific genes alpha7 integrin and sarcomeric Mitochondrial Creatine Kinase (sMtCK). Deletions of large domains of the 315 amino acids long recombinant MyoD indicated that the binding site for both E-box and tetraplex DNA is its basic region KRKTTNADRRKAATMRERRR that encompasses the three underlined clusters of basic residues designated R(1), R(2) and R(3). Deletion of a single or pairs of R triads or R111C substitution completely abolished the E-box-binding capacity of MyoD. By contrast, the MyoD deletion mutants Delta102-114, DeltaR(3), DeltaR(1)R(3) or DeltaR(2)R(3) maintained comparable tetraplex DNA-binding capacity as reflected by the similar dissociation constants of their protein-DNA complexes. Only deletion of all three basic clusters abolished the binding of tetraplex DNA. Implications of the binding of E-box and tetraplex DNA by non-identical MyoD elements are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and properties of hairpin and tetraplex structures of guanine-rich regulatory sequences of muscle-specific genes

Clustered guanine residues in DNA readily generate hairpin or a variety of tetrahelical structures. The myogenic determination protein MyoD was reported to bind to a tetrahelical structure of guanine-rich enhancer sequence of muscle creatine kinase (MCK) more tightly than to its target E-box motif [K. Walsh and A. Gualberto (1992) J. Biol. Chem., 267, 13714-13718], suggesting that tetraplex str...

متن کامل

Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin

Four myogenic regulatory factors (MRFs); MyoD, Myf-5, MRF4 and Myogenin direct muscle tissue differentiation. Heterodimers of MRFs with E-proteins activate muscle-specific gene expression by binding to E-box motifs d(CANNTG) in their promoters or enhancers. We showed previously that in contrast to the favored binding of E-box by MyoD-E47 heterodimers, homodimeric MyoD associated preferentially ...

متن کامل

Phosphorylation inhibits the DNA-binding activity of MyoD homodimers but not MyoD-E12 heterodimers.

MyoD is a member of the basic helix-loop-helix (bHLH) family of muscle gene regulatory proteins that includes myogenin, myf-5, and MRF4. These proteins have been shown to heterodimerize with E2A bHLH proteins, E12/E47, and to bind to a consensus sequence known as an E-box, CANNTG, the target for transcriptional activation by these myogenic regulators. MyoD is also a phosphorylated nuclear prote...

متن کامل

DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer.

The MASH genes are vertebrate homologues of achaete-scute, genes required for neuronal determination in Drosophila. The sequence of MASH1 and MASH2 contains a basic helix-loop-helix (bHLH) motif that is present in other transcriptional regulators such as MyoD and E12. In the absence of an authentic target for the MASH proteins, we examined their DNA binding and transcriptional regulatory activi...

متن کامل

Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer.

Basic helix-loop-helix (bHLH) regulatory proteins are known to bind to a single DNA consensus sequence referred to as an E-box. The E-box is present in the regulatory elements of many developmentally controlled genes, including most muscle-specific genes such as troponin I (TnI). Although the E-box consensus is minimally defined as CANNTG, the adjacent nucleotides of functional E-boxes are vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007